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Directed compact percolation: cluster size and hyperscaling 
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Department of Mathematics, Royal Holloway and Bedford New College, Egham Hill, 
Egham, Surrey TW20 OEX, UK 

Received 22 May 1989 

Abstract. Exact recurrence relations are obtained for the length and size distributions of 
compact directed percolation clusters on the square lattice. The corresponding relation 
for the moment generating function of the length distribution is obtained in closed form 
whereas in the case of the size distribution only the first three moments are obtained. The 
work is carried out for clusters grown from a seed of arbitrary width on an anisotropic 
lattice. A duality property is shown to exist which relates the moment generating functions 
on the two sides of the critical curve. The moments of both distributions have critical 
exponents which satisfy a c o t ”  gap  hypothesis with gap exponents U,-, = 2 and A = 3 
corresponding to the scaling length and scaling size respectively. The usual hyperscaling 
relation for directed percolation is found to be invalid for compact clusters and is replaced 
by 

A = + Du, 
where U, is the exponent corresponding to the cluster width and D is the number of 
transverse dimensions (=  1 for the square lattice). 

1. Introduction 

Consider a directed square lattice in which the sites are the points in the t, y plane 
with integer coordinates such that t 3 0 and f + y  is even. The site ( 1 ,  y )  has two 
outwardly directed bonds leading to the nearest-neighbour sites ( t  + 1, J’ i l ) ,  and the 
positive t axis, which we shall suppose to be horizontal, will be known as the ‘preferred’ 
direction. Dhar (1983) and Domany and Kinzel (1984) have shown that bond and 
site percolation on this directed square lattice are both cases of a one-dimensional 
stochastic cellular automaton model in which t is the time. 

The cells of the automaton are labelled by the integer variable y and can be in one 
of two states 0 and 1. The state of each cell at t = 0 is given and for 12 1 the state of 
the cell y at time t is determined, using probabilistic rules which are the same for each 
cell, by the states of the cells y * 1 at time t - 1. The rules are embodied in the four 
conditional probabilities P(l/O,O)=O, P(111, 1 ) = p , ,  P ( l ( l , O ) = p , ,  P(110, l ) = p ,  
where the first index is the state of site y and the other two are the states of sitcs y - 1 
and y +  1 respectively. The probabilities for y to be in state 0 are the complements of 
these. If  at t = O  the cells with odd values of y are in state zero then the spacetime 
points for which t + y  is odd will correspond to a cell in state zero (i.e. odd cells at 
even times and even cells at odd times are known to be in state zero) since two zeros 
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never give rise to a 1. We shall always suppose that this is the case and hence only 
sites on the spacetime lattice for which t + y is even need be considered. 

For the choice pu = P d  = p z  = p the spacetime cells in state 1 correspond to directed 
square site percolation clusters which are attached to the y axis and  when p ,  = P d  = p 
and p z  = 2p - p 2 ,  bond percolation clusters result. In  the case p z  = 1 the spacetime cells 
in state 1 form compact clusters on the square lattice (figure 1) since two cells in state 
1 are always followed by a cell in state 1 and  hence no holes can form. In this paper 
we shall consider only the case p z  = 1 and only initial states in which all the cells in 
state 1 are contiguous. If there are rn of these they will be said to form a seed of width 
m. Domany and Kinzel (1984) showed that for isotropic compact clusters ( p ,  = P d  = p )  
with a seed of width one there is a critical probability, p c = f ,  above which there is a 
positive probability that at least one cell will be in state 1 at any time. The latter event 
corresponds to a compact cluster of infinite extent in the direction of the t axis. They 
also determined the probability r , ( p )  that at  least one cell will be in state 1 at time t 
but that there are no such cells at time t + 1. This event corresponds to a compact 
cluster of length t +  1, where we define cluster length to be the number of atoms in a 
path from the seed to the terminal point. Notice that all compact clusters generated 
by the above process are either infinite or terminate after a finite number of steps in 
a single vertex. These clusters are only a subset of the compact directed animals 
considered by Bhat et al (1986,1988) who allow two adjacent occupied sites ( y *  1 
say) at time t - 1 to be followed by a vacant site y at time t .  Their compactness 
condition is that all occupied sites in a given column t must be contiguous. 

Here (0 2) we rederive the results of Domany and  Kinzel for compact clusters and  
also obtain the moment generating function and all the moments of the cluster length 
distribution. In 0 3 a different technique is used to generalise the results to the 
anisotropic case p ,  # pd and to seeds of arbitrary width rn. The critical curve for the 
anisotropic case is found to be pu+pd = 1 and  a duality relation connecting points on 
either side of this curve is also discussed in this section. In 0 4 the same method is 
used to investigate the cluster size distribution which is the more usual function of 
interest in percolation theory. A recurrence relation for the moment generating function 
of this distribution is obtained which in principle allows all the moments to be 
determined. In fact we have obtained only the first three moments, the critical exponents 
of which are consistent with the existence of a scaling size. Hyperscaling, which is 
found to be valid numerically for directed bond and  site percolation (De’Bell and 
Essam 1983), is found not to hold for compact clusters. This is perhaps not surprising 

Figure 1. A directed compact cluster with 19 growth stages, length 20 and size 32 together 
with the corresponding pair of parallel walks of 20 steps. 
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since the usual arguments for hyperscaling breakdown for these clusters. Further 
results of this work are summarised and discussed in 9 5 .  

2. Isotropic clusters grown from a seed of width one 

We begin by considering the isotropic case p U = p d = p .  I t  was noted by Domany and  
Kinzel (1984) that compact percolation clusters grown from a seed of width one may 
be placed in one-to-one correspondence with pairs of directed parallel walks on the 
dual lattice which intersect only on the last step (see figure 1). One of the walks follows 
the upper edge of the cluster as closely as possible and the other follows the lower 
edge. A step which corresponds to an  increase in the cluster width will be said to be 
outward. For a cluster which terminates after t growth stages (and  therefore has length 
L = t + 1) the walks will meet after each one has executed t + 1 steps. The number of 
pairs of walks of the above type with a given length has been enumerated by Delest 
and  Viennot (1984) and  their result may be taken over to give the following formula 
for the number of compact clusters w, having exactly t growth stages: 

w,=-( 1 2 t + 2  ). 
t + 2  t + l  

This has generating function 

X 

W ( x ) =  1 w , x ' = [ l - 2 x - ( l - 4 x ) " 2 ] / 2 x 2 .  (2.2) 
I =o 

The probability r , ( p )  that a cluster grown for a single occupied site will terminate after 
t growth stages will be known as the cluster length distribution since such a cluster is 
defined to have length L = t + 1. The probability of occurrence of a specific cluster 
having exactly t growth stages is p'q'+' since a factor p is associated with each outward 
step and  a factor q ( = l - p )  with each inward step of the corresponding walk, and  
there are two more inward steps than outward steps and  hence 

r , ( p )  = w,p'q'+' (2.3) 

and  using Stirling's formula for the factorials in w, we obtain, in agreement with 
Domany and  Kinzel (1984), for p + pc  = 1: 

1 
rr (P 1 = J.rrt.7/' exp( - 11 50 

S d P )  = ( - 2 p ) 2  

where ( , - , (p)  is the decay length: 

1 

and hence the critical exponent VQ = 2. 
The probability Q ( p )  that a cluster of the above type is finite is given by 

x 

Q ( p )  = C r , ( p )  = q2w(p9). 
I =o 
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The argument of the square root in (2.2) with x = p q  evaluates to ( 1  - 2 ~ ) ~  and the 
choice of its sign depends on whether p is above or below p c ,  thus 

from which we obtain the percolation probability 

for p > p c  and hence the critical exponent ,B = 1. 
The kth moment of the probability distribution r , ( p )  is defined by 

x 

p h ( p ) =  r A r f ( p )  
f = o  

and may be obtained from the generating function 

(2.9) 

(2.10) 

Clearly p u o ( p )  = R ( p ,  0) = Q ( p )  and using (2.10) we find that the expected length L ( p )  
given that the cluster is finite is 

(2.11) 

= L(1 - p ) .  (2.12) 

Notice that L ( p )  has critical exponent 7 = 1 which is different from that of the decay 
length. In general we expect, from scaling theory, that 7+,B = vf i .  The symmetry of 
L ( p )  about p c  arises from the fact that the normalised generating function, R ( p ,  z ) /q’ ,  
is invariant under interchange of p and q and that L ( p )  is determined by a ratio of 
moments. This ‘duality’ is therefore a property shared by all moments when normalised 
by division by po (see $ 3.3 for discussion of the use of the term ‘duality’). 

For k >  1 we find from (2.10), expanding W(pqe-’) in powers of z with the aid of 
the exact expression (2.2) and  keeping the dominant term as p + p c ,  

Before going on to consider the cluster size distribution we first rederive the above 
results by a more general technique and at the same time obtain the extension to the 
anisotropic problem pu # pd and to clusters based on a seed of width m. 

3. Anisotropic clusters grown from a seed o f  width m 

Let R , ( p ,  z )  be the moment generating function as defined in (2.10) but where now 
r , ( p )  is replaced by r f ( p ,  m ) ,  the probability that a cluster grown from a seed of width 
m will terminate after t growth stages, and p denotes the pair of variables {pu, pd}. 
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3.1. Recurrence relations 

At t = 1 the cluster has three possible widths, m - 1 ,  m and m + 1 which occur with 
probabilities d = 9 u 9 d ,  ~ ~ 9 ~ + 9 , , p d  and c =pupd respectively. This leads to the recur- 
rence relation for m > 2 and t > 1 

r,(p, m )  = cr l - l (p ,  m + 1 ) + ( 1 - c - d ) r l + l  ( p ,  m 1 + dr,_ I ( p ,  m - 1 )  (3.1 1 
with initial condition 

for m = 1 
for m 3 2 .  r " h  m )  = (3 .2 )  

The corresponding relation for the moment generating function is, for m 2 2,  

Rm(p,  z )=e- ' [ cR ,+ , (p ,  z ) + ( l - c - d ) R , ( p ,  z )+dRm+l(p ,  213. (3 .3)  

r,(p, 1 )  = ~ r , - ~ ( p ,  2 )  + ( 1  - c - d )  r, - l(p, 1 )  (3 .4)  

R , ( p , z ) - r J p ,  l)=e.-'EcRAp, z ) + ( l - c - d ) R , ( p , z ) l  (3 .5)  

R,(p, z )  = e'. (3 .6)  

In the case m = 1 and t 2 1 

which gives rise to 

so that (3 .3)  is valid with m = 1 provided that 

3.2. Solution of the recurrence relation fo r  the moment generating function 

Equation (3 .3)  has solutions of the form A m  where A is a root of 

CA'+ ( 1  - c - d )  -e')A + d = 0 

A = { c +  d +e'  - 1 -d[( 1 - c - d -e')? -4cd]} /2c .  

R,(p, z )  = e'A (z)"'  

(3 .7)  

(3 .8)  

(3 .9)  
which reduces to R ( p ,  z )  in the case m = 1 and pu =pd  = p .  Setting z - 0  gives the 
probability Q m ( p )  that a cluster grown from a seed of width m is infinite: 

and  the solution which remains bounded as z + zc is 

Imposing the additional condition (3.6) gives 

(3 .10)  

The critical curve c = d has equation 

P u + P d =  1 (3 .11)  
and the asymptotic form of the percolation probability near this curve, generalised to 
a seed of width m, is 

p m ( P )  m(pu + ~ d -  l ) / ~ u p ,  (3.12) 
and hence the critical exponent p = 1 for all m and all points on the curve, as expected. 
Expanding the generating function in  powers of z to obtain the moments shows that 
the mean length is 

m l ( 1  -Pu-Pd) for p u  + P d  < 1 
(3 .13)  m l ( 1 - 9 u - 9 d )  for p U + p d >  1 L m ( P )  = 
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and that the critical exponent of the kth moment, for all m and all points on the 
critical curve, is 2k-  1. This critical behaviour of the moments and that of the 
percolation probability also follows from the scaling form 

A ( z )  1 + { (  d - C )  - Id - c ~ J [  1 + ~ c z / (  c - d)']} 

by which we mean 

lim [(A(z) - l ) / ( d  - c ) ]  = 1 -sgn(d - c)J( 1 +4cZ)  
d - c  

where the limit is taken with 2 = z/(c - d ) *  fixed. 

3.3. Duality 

Notice that R,(p,  z)/d"' is invariant under interchange of c and d, which is an extension 
of the duality property introduced in the previous section. I t  follows that all moments 
when divided by d have this property which manifests itself in the symmetry of the 
expressions for & ( p )  and L , ( p )  given above. This result will now be obtained by a 
direct argument which extends (2.3). 

Let c,  be a possible finite cluster grown from a seed of width m. The probability 
of occurrence of such a cluster may be obtained by considering the steps in the bounding 
walks on the dual (figure 1). Now Pu is the probability that the upper walk moves 
outwards at a given step and qu is the probability that it moves inwards. The correspond- 
ing probabilities for the lower walk are pd and qd respectively. The smallest possible 
cluster is generated by taking all inward steps and terminates after each walk has made 
m such steps; it therefore occurs with probability ( q u q d ) , .  Any other cluster will have 
in addition a number of outward steps some of which may be up and the others will 
be down. In order for the cluster to terminate there must be an inward step of the 
lower boundary for every outward step of the upper boundary and vice versa. The 
probability that c ,  occurs is therefore: 

pr( cm = ( q u q d )  (pu q d )  (pd 4") (3.14) 

where U is the number of upward steps of the upper bounding walk and d is the 
number of downward steps of the lower bounding walk of c,. It follows that Pr( c,)/d 
is invariant under the simultaneous interchanges 

Pu-qd Pd'qu. (3.15) 

The probability r , (p ,  m )  is obtained summing (3.14) over all clusters for which U + d = t .  
hence r , (p ,  m)/d"  is invariant under the interchanges (3.15) and since from the 
recurrence relation (3.1) it may be written as a function of c and d only, it is invariant 
under interchange of c and d. Use of the definition of R,(p,  z )  in terms of r , (p ,  m )  
gives the observed duality property of this moment generating function. 

We have called the symmetry relation 'duality' for the following reasons. Returning 
to the automaton model described in the introduction we note that P(OI0,O) = 1 and 
with the initial condition under consideration (a  single seed of width m )  the cells in 
state 0 are contiguous but fall into two groups, those above the seed and those below. 
However, suppose we consider the model to be a limiting case of a finite circular 
automaton in which the cells are positioned on a circle at angles 8 = 2 r y /  N with 
y = 0, .  . . , N - 1, where N is an even integer, and again suppose that initially there 
are m cells in state 1 and that these cells have even y and are contiguous (i.e. there 
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are no intervening even cells in state 0). The cells in state zero are now also contiguous 
and  both types of cell remain contiguous for all t .  The spacetime lattice is now on a 
cylinder and the cells of the spacetime lattice consist of a compact cluster of type 0 
and  a compact cluster of type 1 and the relation between them is symmetric. The 
cluster edges will still be referred to as upper and lower and passage through the 
cluster from lower to upper edge is in the anticlockwise direction. The bounding walks 
on the dual now separate the 1-cluster from the 0-cluster and the walk which bounds 
the upper edge of the 1-cluster bounds the lower edge of the 0-cluster. Hence outward 
moves for the 1-cluster are inward moves for the 0-cluster and  vice versa (similarly 
for the other bounding walk). The properties of the 0-cluster, e.g. mean length and 
mean size, can therefore be obtained from those of the I-cluster by the interchange 
(3.15) since the q are now the outward probabilities for the 0-cluster and U and d are 
interchanged because of the above correspondence between upper and  lower edges. 

The situation described in the previous paragraph is reminiscent of the well known 
two-dimensional Ising model in which clusters of up spins are separated from clusters 
of down spins by polygons on the dual. The symmetry property of the partition function 
(Kramers and  Wannier 1941) in this case is less clear but can be obtained from matching 
the low-temperature cluster expansion with the high-temperature polygon expansion 
on the dual. 

In percolation theory there are two types of coexisting cluster and for site percolation 
on the triangular lattice the clusters of one type f i l l  the holes in the other type leading 
to p , = i  (Sykes and Essam 1964). This property of site percolation clusters on the 
triangular lattice was known as a matching relation but may also be seen as a duality 
relation on a modified lattice (Essam 1979). In  the compact cluster model considered 
here there is only one cluster of each type but if the initial state consisted of many 
seeds then the resulting set of clusters would be such that clusters of type 0 f i l l  the 
holes in the clusters of type 1. 

4. The cluster size distribution 

The probability p , ( p )  that a cluster grown from a single site has s sites (i.e. size s) is 
one of the basic functions normally studied in percolation theory and we now consider 
its generalisation, p s ( p ,  m ) ,  to clusters based on a seed of width m. The analysis follows 
closely that of the distribution r , ( p ,  m )  in the previous section but we have been unable 
to obtain an  explicit solution of the recurrence relation satisfied by the moment 
generating function. However, closed formulae have been obtained for the mean 
cluster size and  the second moment of the distribution. In principle such an expression 
could be obtained for any moment but the results become increasingly complex the 
higher the moment. 

4.1. Recurrence relations 

For m 5 2 and s 2 m + 1 the cluster size distribution satisfies the relation 

which is similar to equation (3.1) for the length distribution function except that s - 1 
is replaced by s - m on the right-hand side. In  the case m = 1 the last term is zero for 
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s 2 2 and the boundary conditions are 

for m = s = l  
for m 2 2 and s d m. P , ( P ,  m )  = 

The moment generating function may be defined by 

(4.2) 

and for all m 3 1 it satisfies the relation 

G,,(p,  h )  = e-"''[cGm,l ( p ,  h 1 + ( 1 - c - d )G, (p ,  h 1 + dG,-,(p, h ) l  (4.4) 

provided that we define G,(p, h )  = 1. Setting h = 0 gives the probability that the cluster 
is finite: 

G,(p, 0) = (4.5) 

an  explicit formula for which is given by equation (3.10). 

4.2. Duality 

The probability p , ( p ,  m )  may be obtained by summing Pr(c,) over all clusters with s 
sites and  hence p c ( p ,  m ) / d ' "  has the same duality property as r , ( p ,  m ) / d ' "  and so does 
G,(p,  h ) / d m .  It is therefore only necessary to solve the recurrence relation (4.4) in 
the non-percolating region c < d  in order to obtain the complete solution. We have 
not so far obtained such a solution but all the usual critical exponents may be obtained 
from the first and  second moments which we now derive. These moments when 
normalised by dividing by the zeroth moment will be invariant under the duality 
transformation c-d. 

4.3. The moments 

Firstly note that Q m ( p )  satisfies a second-order linear recurrence relation with constant 
coefficients: 

(4.6) 

d A (  a-"A( a " Q m ( p ) ) )  = 0 (4.7) 

where A is the usual forward difference operator and  

Equation (4.7) has the general solution 

O m  (P 1 = f i  ( a 1 + fi ( a 1 a - m.  (4.9) 

For c < d the second solution is invalid since it becomes unbounded as m +a=, hence 
f 2 (  a )  = 0 and  since Q,(p)  = 1 i t  follows that Q m ( p )  = 1 for all m. For c > d,  considering 
the smallest cluster for given m shows that Q m ( p )  = d"' = a-"' as a + 0 and hence 
f l ( a )  = 0, f 2 ( a )  = 1 in agreement with (3.10). 
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The first moment of p $ ( p ,  m )  when normalised by Q m ( p )  is the expected cluster 
size S , ( p )  given that the cluster is finite. Differentiating (4.4) with respect to h and 
setting h = 0 gives, for n 5 1 and c < d :  

S m  ( p )  = cSv,+ I ( P I  + ( 1 - c - d I s m  ( p )  + dSm - I ( p )  + m (4.10) 

which has an obvious direct interpretation and may be written 

dA(a- '"A(a"S , (p ) ) )  = -m - 1 .  (4.11) 

This relation has the general solution 

(4.12) 

The last term is zero since it becomes unbounded as m -+ cc and imposing the initial 
condition S , ( p )  = 0 gives 

(4.13) 

and hence the critical exponent y = 2 all along the critical curve a = 1 (or c = d ) .  
In order to find the gap exponent A we consider the second normalised moment 

U , ( p )  of the cluster size distribution. For c < d, differentiating (4.4) twice with respect 
to h, U , ( p )  may be seen to satisfy the relation 

U ,  ( p  ) = c U, + 1 (P 1 + ( 1 - c - d ) U,, ( p  ) + d u m  - 1 ( p  ) - m + 2 mS, ( p  ) 

which may be written 

(4.14) 

d A ( a - " A ( a " U , ( p ) ) )  = ( 1  - A ) ( m  + 1 ) ' -  B ( m  + 1)' (4.15) 

where 

A = ( c +  d ) / ( d  -c)'  and B = l / ( d  - c). (4.16) 

Imposing the same initial and  boundary conditions as for S , ( p ) ,  the required solution 
is 

dU,  ( p )  = ( A  + B - 1 ) t i  + ( 3 A  + 7 B - 3) t ,  + ( A  + 6 B  - 1 )  t 3  + Bt, (4.17) 

where 

( k - l ) !  ' 
t k  =- c mC,[a/ ( l -a) ]k-" .  

1 - U  n = l  
(4.18) 

The binomial coefficient "C, is given the value zero for n > m. In the case m = 1 only 
the term n = 1 f ix  each value of k is required and  this yields the result 

UI(p)  = [ 1 - 2 b  + 2 b 3  - b 4 +  ~ ( 9 -  15b + 3 b 2 +  3 b 3 ) +  c'( 18 - 16b - 2 6 ' )  + 10c3]/(1 - b)' 
(4.19) 

where b = pu + p d .  Thus the second moment of the cluster size distribution has critical 
exponent 5 and since the first moment was found to have critical exponent 2 it follows 
that the gap exponent A = 3 in agreement with the scaling relation A = p + y together 
with the previous results p = 1, y = 2. Inspection of (4 .17 )  shows that A is independent 
of m. 
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5. Discussion 

The length and  size distributions of compact directed clusters grown from a seed of 
width m have been investigated. In  the case of the length distribution an explicit 
formula for the moment generating function has been given and the critical exponent 
for the kth moment was found to be 2 k  - 1. The ‘gap exponent’ A ,  for this distribution 
therefore has the value 2 in agreement with the result A ,  = v~ which results from a 
scaling hypothesis with characteristic length [ ~ ( p ) .  A recurrence relation has been 
given for the moment generating function of the cluster size distribution which is 
similar to that for the length distribution but has not been solved explicitly. However, 
the first three moments (zeroth, first and second) have been obtained and are consistent 
with a scaling hypothesis having characteristic size with critical (‘gap’) exponent A = 3. 

Domany and  Kinzel (1984) have shown that the scaling width ( , ( p )  has critical 
exponent v, = 1. They deduced this result from the solution of a triangular lattice 
Ising model with three-spin interactions in alternate triangles (Verhagen 1976). The 
same result follows by considering the mean width of a cluster in the percolating phase 
as a function of its length. Using the idea of Domany and Kinzel (1984) that the upper 
and  lower edges of the cluster are random walks with probabilities p, ,  and pd of moving 
outwards respectively we see that the mean width is 2 ( p u + p d - l ) r + m  and hence 
(Kinzel 1983) 

( : P I / [ ; ’ -  Pu+Pd-l (5.1) 

and  hence v- = v o  - 1 = 1. This result when combined with the results j3 = 1, A = 3 ,  
”0 = 2 leads to an inconsistency with the hyperscaling relation (Cardy and Sugar 1980, 
De’Bell and Essam 1983, Kinzel 1983) 

(5.2) 

which is satisfied by series expansion estimates for ordinary directed percolation 
(De’Bell and  Essam 1983). Here the number of perpendicular dimensions D = 1. This 
breakdown of hyperscaling is perhaps not surprising since the superlattice picture of 
an  infinite cluster (Skal and  Shklovskii 1975, Harms and Strayley 1982, Redner 1982) 
is clearly not valid for compact clusters. For finite compact clusters the scaling size 
is proportional to the volume (,(p)(p(p)” which leads to the alternative scaling relation 

(5.3) 

A +  j3 = ~ f i  + Dv- 

A = ~0 + Du_ 

which is satisfied by our D = 1 results. 
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